top of page

Publications 

Book 

Burdman S and Walcott R (eds.). 2018. Plant-Pathogenic Acidovorax Species. American Phytopathological Society (APS) Press, St. Paul, MN, 210 pages.

Peer-reviewed articles 

 
Rudt E, Faist C, Schwantes V, Wiedmayer-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W and Hayen H. 2025. In-depth phospholipid profiling of plant-pathogenic bacteria after treatment with antimicrobial random peptide mixtures. Analytica Chimica Acta, early view: https://doi.org/10.1016/j.aca.2025.343680.
Xiao Y, Ray S, Burdman S and Teper D. 2024. Host-driven selection, revealed by comparative analysis of Xanthomonas type III secretion effectoromes, unveils novel recognized effectors. Phytopathology 114:2207-2220. 

Brill A, Menagen B, Malach E, Zelinger E, Avnir D, Burdman S and Hayouka Z. 2024. Entrapment of antimicrobial compounds in a metal matrix for crop protection. Microbial Biotechnology 17:e70005.

Rudt E, Faist C, Schwantes V, Konrad N, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z and Hayen H. 2024. LC-MS/MS-based phospholipid profiling of plant-pathogenic bacteria with tailored separation of methyl-branched species. Analytical and Bioanalytical Chemistry 416:5513-5525.

Jiménez-Guerrero I, Sonawane M, Eckshtain-Levi N, Tuang ZK, da Silva GM, Pérez-Montaño F, Leibman-Markus M, Gupta R, Noda-Garcia L, Bar M an
d Burdman S. 2024. Natural variation in a short region of the Acidovorax citrulli type III-secreted effector AopW1 is associated with differences in cytotoxicity and host adaptation. The Plant Journal 117:516-540.

Rosenberg T, Jiménez-Guerrero I, Tamir-Ariel D, Yarnitzky T and Burdman S. 2022. The GDSL-lipolytic enzyme Lip1 is required for full virulence of the cucurbit pathogenic bacterium Acidovorax citrulli. Microorganisms 10:1016.

Gopalakrishnan V, Burdman S, Jurkevitch E and Helman Y. 2022. From the lab to the field: combined application of plant-growth-promoting bacteria for mitigation of salinity stress in melon plants. Agronomy 12:408.

Wiedmaier-Czerny N, Schroth D, Krauß S, Topman-Rakover S, Brill A, Burdman S, Hayouka Z and Vetter W. 2022. Stable isotope analysis confirms substantial changes in the fatty acid composition of bacteria treated with antimicrobial random peptide mixtures (RPMs). Scientific Reports 12:11230.

Aharon E, Mookherjee A, Pérez-Montaño F, da Silva GM, Sathyamoorthy R, Burdman S and Jurkevitch E. 2021. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Research in Microbiology 172:103878

Wiedmaier-Czerny N, Schroth D, Topman-Rakover S, Brill A, Burdman S, Hayouka Z and Vetter W. 2021. Detailed analysis of the fatty acid composition of six plant-pathogenic bacteria. Journal of Chromatography B 1162:122454.

Jiménez-Guerrero I, Pérez-Montaño F, da Silva GM, Wagner N, Shkedy D, Zhao M, Pizarro L, Bar M, Walcott R, Sessa G, Pupko T and Burdman S. 2020. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium Acidovorax citrulli and novel effectors in the Acidovorax genus. Molecular Plant Pathology 21:17-37.


Topman-Rakover S, Malach E, Burdman S and Hayouka Z. 2020. Antibacterial lipo-random peptide mixtures exhibit high selectivity and synergistic interactions. Chemical Communications 56:12053-12056.

Chalupowicz L, Reuven M, Dror O, Sela N, Burdman S and Manulis-Sasson S. 2020. Characterization of Acidovorax citrulli strains isolated from solanaceous plants. Plant Pathology 69:1787-1797.

Joshi JR, Khazanov N, Khadka N, Charkowski AO, Burdman S, Carmi N, Yedidia I and Senderowitz H. 2020. Direct binding of salicylic acid to Pectobacterium N-acyl-homoserine lactone synthase. ACS Chemical Biology 15:1883-1891.

Zhao M, Dutta B, Luo X, Burdman S and Walcott RR. 2020. Genetically distinct Acidovorax citrulli strains display cucurbit fruit preference under field conditions. Phytopathology 110:973-980

Youdkes D, Helman Y, Burdman S, Matan O and Jurkevitch E. 2020. Potential control of potato soft rot disease by the obligate predators Bdellovibrio and like organisms. Applied and Environmental Microbiology 86:e02543-19.

Kan Y, Lyu Q, Jiang N, Han S, Li J, Burdman S and Luo L. 2020. iTRAQ-based proteomic analyses of the plant-pathogenic bacterium Acidovorax citrulli during entrance into and resuscitation from the viable but nonculturable state. Journal of Proteomics 211:103547.
 
Yang R, Santos-Garcia D, Pérez-Montaño F, da Silva GM, Zhao M, Jimenez-Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R and Burdman S. 2019. Complete assembly of the genome of an Acidovorax citrulli strain reveals a naturally occurring plasmid in this species. Frontiers in Microbiology 10:1400.

Kan Y, Jiang N, Xu X, Lyu Q, Gopalakrishnan V, Walcott R, Burdman S, Li J and Luo L. 2019. Induction and resuscitation of the viable but nonculturable (VBNC) state in Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbitaceous crops. Frontiers in Microbiology 10:1081

Traore SM, Eckshtain-Levi N, Miao J, Castro Sparks A, Wang Z, Wang K, Li Q, Burdman S, Walcott R, Welbaum GE and Zhao B. 2019. Nicotiana species as surrogate host for studying the pathogenicity of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Molecular Plant Pathology 20:800-814

Cardenas PD, Sonawane PD, Heinig U, Jozwiak A, Panda S, Abebie B, Kazachkova Y, Pliner M, Unger T, Wolf D, Ofner I, Vilaprinyo E, Meir S, Golan O, Gal-On A, Burdman S, Giri A, Zamir D, Scherf T, Szymanski J, Rogachev I and Aharoni A. 2019. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nature Communications 10:5169.
 
Topman S, Tamir-Ariel D, Bochnic-Tamir H, Stern Bauer T, Shafir S, Burdman S and Hayouka Z. 2018. Random peptide mixtures as new crop protection agents. Microbial Biotechnology 11:1027-1036.

Rosenberg T, Babajide Salam B and Burdman S. 2018. Association between loss of type IV pilus synthesis ability and phenotypic variation in the cucurbit pathogenic bacterium Acidovorax citrulli. Molecular Plant-Microbe Interactions 31:548-559

Makarovsky D, Fadeev L, Babajide Salam B, Zelinger E, Matan O, Inbar J, Jurkevitch E, Gozin M and Burdman S. 2018. Silver nanoparticles in complex with bovine submaxillary mucin possess strong antibacterial activity and protect against seedling infection. Applied and Environmental Microbiology 84:e02212-17.

Zimerman-Lax N, Tamir-Ariel D, Shenker M and Burdman S. 2018. Decreased potassium fertilization is associated with increased pathogen growth and disease severity caused by Acidovorax citrulli in melon foliage. Journal of General Plant Pathology 84:27-34.

Reem Brenholtz G, Tamir-Ariel D, Okon Y and Burdman S. 2017. Carotenoid production and phenotypic variation in Azospirillum brasilense. Research in Microbiology 168:493-501.

Eckshtain-Levi N, Shkedy D, Gershovits M, Mateus da Silva G, Tamir-Ariel D, Walcott R, Pupko T and Burdman S. 2016. Insights from the genome sequence of Acidovorax citrulli M6, a group I strain of the causal agent of bacterial fruit blotch of cucurbits. Frontiers in Microbiology 7:430.  

Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A and Yedidia I. 2016. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Scientific Reports 6:38126.

 
Zimerman-Lax N, Shenker M, Tamir-Ariel D, Perl-Treves R and Burdman S. 2016. Effects of nitrogen nutrition on disease development caused by Acidovorax citrulli on melon foliage. European Journal of Plant Pathology 145:125-137.
 
Joshi JR, Burdman S, Lipsky A and Yedidia I. 2016. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum subsp. brasiliense via quorum-sensing regulation. Molecular Plant Pathology 17:487-500.
 
Cardenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S and Aharoni A. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications 7: 10654.
 
Shavit R, Lebendiker M, Pasternak Z, Burdman S and Helman Y. 2016. The vapB-vapC operon of Acidovorax citrulli functions as a bona-fide toxin-antitoxin module. Frontiers in Microbiology 6:1499.
 
Chalupowicz L, Dror O, Reuven M, Burdman S and Manulis-Sasson S. 2015. Cotyledons are the main source of secondary spread of Acidovorax citrulli in melon nurseries. Plant Pathology 64:528-536.
 
.Joshi JR, Burdman S, Lipsky A and Yedidia I. 2015. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Research in Microbiology 166:535-545.
 
Barel V, Chalupowicz L, Barash I, Sharabani G, Reuven M, Dror O, Burdman S and Manulis-Sasson S. 2015. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the DSF-dependent quorum sensing system. Molecular Plant Pathology 16:710-723.
 
Cardenas PD, Sonawane PD, Heinig U, Bocobza SE, Burdman S and Aharoni A. 2015. The bitter side of the nightshades: Genomics drives discovery in the Solanaceae steroidal alkaloids metabolism. Phytochemistry 113:24-32.
 
Eckshtain-Levi N, Munitz T, Živanović M, Traore SM, Spröer C, Zhao B, Welbaum G, Walcott R, Sikorski J and Burdman S. 2014. Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages. Phytopathology 104:1152-1162.
 
Buxdorf K, Rubinsky G, Barda O, Burdman S, Aharoni A and Levy M. 2014. The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Molecular Biology 84:37-47.

Shrestha RK, Rosenberg T, Makarovsky D, Eckshtain-Levi N, Zelinger E, Kopelowitz J, Sikorski J and Burdman S. 2013. Phenotypic variation in the plant pathogenic bacterium
Acidovorax citrulli. PLoS One 8:e73189.
 
Volfson V, Fibach-Paldi S, Paulucci NS, Dardanelli MS, Matan O, Burdman S and Okon Y. 2013. Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biology and Biochemistry 67:255-262.
 
Shavit R, Lalzar-Ofek M, Burdman S and Morin S. 2013. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Sciences 4:306.
 
Kroupitski Y, Brandl, MT, Pinto R, Belausov E, Tamir-Ariel D, Burdman S and Sela (Saldinger) S. 2013. Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vivo expression technology. Phytopathology 103:362-372.
 
Burdman S and Walcott R. 2012. Acidovorax citrulli:  generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology 13:805-815.
 
Tamir-Ariel D, Rosenberg T, Navon N and Burdman S. 2012. A secreted lipolytic enzyme from Xanthomonas campestris pv. vesicatoria is expressed in planta and contributes to its virulence. Molecular Plant Pathology 13:556-567.
 
Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S and  Okon Y. 2012. The Vicia sativa spp. nigra - Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant and Soil 356:165-174.
 
Fibach-Paldi S, Burdman S and Okon Y. 2012. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiology Letters 326:99-108.
 
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L, Meir S, Iijima Y, Aoki K, de Vos R,  Prusky D, Burdman S, Beekwilder S and Aharoni A. 2011. GLYCOALKALOID METABOLISM 1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. The Plant Cell 23:4507-4525.
 
Burdman S, Bahar O, Parker JK and De La Fuente L. 2011. Involvement of type IV pili in pathogenicity of plant pathogenic bacteria. Genes 2:706-735.
 
Bahar O, Levi N and Burdman S. 2011. The cucurbit pathogenic bacterium Acidovorax citrulli requires polar flagellum for full virulence before and after host tissue penetration. Molecular Plant-Microbe Interactions 24:1040-1050.
 
Buskila Y, Tsror L, Sharon M, Teper Bamnolker P, Holczer-Erlich O, Warshavsky S, Ginzverg I, Burdman S and Eshel D. 2011. Postharvest dark skin spots in potato tubers are an oversuberization response to Rhizoctonia solani infection. Phytopathology 101:436-444.
 
Tamir-Ariel D, Rosenberg T and Burdman S. 2011. The Xanthomonas campestris pv. vesicatoria citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system. Molecular Plant Pathology 12:57-71.
 
Bahar O, De La Fuente L and Burdman S. 2010. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. FEMS Microbiology Letters 312:33-39.
 
Bahar O and Burdman S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. Israel Journal of Plant Sciences 58:19-31.
 
Lerner A, Valverde A, Castro-Sowinski S, Lerner H, Okon Y and Burdman S. 2010. Phenotypic variation in Azospirillum brasilense exposed to starvation. Environmental Microbiology Reports 2:577-586.
 
Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y and Burdman S. 2009. The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155:4058-4068.
 
Lerner A, Castro-Sowinski S, Lerner H, Okon Y and Burdman S. 2009. Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiology Letters 300:75-82.
 
Bahar O, Goffer T and Burdman S. 2009. Type IV pili are required for virulence, twitching motility and biofilm formation of Acidovorax avenae subsp. citrulli. Molecular Plant-Microbe Interactions 22:909-920.
 
Lerner A, Okon Y and Burdman S. 2009. The wzm gene located in the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155:791-804.
 
Bahar O, Kritzman G and Burdman S. 2009. Bacterial fruit blotch of melon: screen for disease tolerance and correlation between susceptibility in seed transmission assays and bacterial seed adhesion. European Journal of Plant Pathology 123:71-83.
 
Yishay M, Burdman S, Valverde A, Luzzatto T, Ophir R and Yedidia I. 2008. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum subsp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environmental Microbiology 10:2746-2759.
 
Bahar O, Efrat M, Hadar E, Dutta B, Walcott RR and Burdman S. 2008. New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathology 57:754-763.
 
Tamir-Ariel D, Navon N and Burdman S. 2007. Identification of Xanthomonas campestris pv. vesicatoria genes induced in its interaction with tomato. Journal of Bacteriology 189:6359-6371.
 
Valverde A, Hubert T, Stolov A, Dagar A, Kopelowitz J and Burdman S. 2007. Assessment of genetic diversity of Xanthomonas campestris pv. campestris isolates from Israel by various DNA-fingerprinting techniques. Plant Pathology 56:17-25.
 
Stolov A, Valverde A, Ronald P and Burdman S. 2007. Purification of soluble and active RaxH, a transmembrane histidine protein kinase from Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Molecular Plant Pathology 8:93-101.
 
Paz Z, Burdman S, Gerson U and Sztejnberg A. 2007. Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora. Journal of Applied Microbiology 103:2570-2579.
 
Valverde A, Okon Y and Burdman S. 2006. cDNA-AFLP reveals differentially expressed genes related to cell aggregation of Azospirillum brasilense. FEMS Microbiology Letters 265:186-194.
 
Gal TZ, Elitsur Y, Aussenberg R, Burdman S, Kapulnik Y and Koltai H. 2006. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism on tomato. Planta 224:155-162.
 
Burdman S, Kots N, Kritzman G and Kopelowitz J. 2005. Molecular, physiological and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Disease 89:1339-1347.

Burdman S, Shen Y, Lee SW, Xue Q and Ronald P. 2004. RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity in Xa21-rice lines. Molecular Plant-Microbe Interactions 17:602-612.
 
Da Silva FG, Shen Y, Dardick C, Burdman S, Yadav RC, De Leon AL and Ronald P. 2004. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Molecular Plant-Microbe Interactions 17:593-601.
 
Kadouri D, Burdman S, Jurkevitch E and Okon Y. 2002. Identification and isolation of genes involved in poly-hydroxybutyrate (PHB) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Applied and Environmental Microbiology 68:2943-2949.
 
Burdman S, Dulguerova G, Okon Y and Jurkevitch E. 2001. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots and its involvement in cell aggregation. Molecular Plant-Microbe Interactions 14:555-561.
 
Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S and Okon Y. 2001. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum L.) and fava beans (Vicia faba L.) under different growth conditions. Agronomie 21:553-560.
 
Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S and Okon Y. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology 28:871-879.
 
Burdman S, Jurkevitch E, Soria-Díaz ME, Gil Serrano AM and Okon Y. 2000. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiology Letters 189:259-264.
 
Burdman S, De Mot R, Vanderleyden J, Okon Y and Jurkevitch E. 2000. Identification and characterization of the omaA gene encoding the major outer membrane protein of Azospirillum brasilense. DNA Sequence 11:225-237.
 
Burdman S, Okon Y and Jurkevitch E. 2000. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Critical Reviews in Microbiology 26:91-110.
 
German MA, Burdman S, Okon Y and Kigel J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils 32:259-264.
 
Itzigsohn R, Burdman S, Okon Y, Zaady E, Yonatan R and Perevolotsky A. 2000. Plant growth promotion in natural pastures by inoculation with Azospirillum brasilense under sub-optimal growth conditions. Arid Soil Research and Rehabilitation 13:151-158.
 
Burdman S, Jurkevitch E, Schwartsburd B and Okon Y. 1999. Involvement of outer membrane proteins in the aggregation of Azospirillum brasilense. Microbiology 145:1145-1152.
 
Vedder-Weiss D, Jurkevitch E, Burdman S, Weiss D and Okon Y. 1999. Root growth, respiration and beta-glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense. Symbiosis 26:363-377.
 
Burdman S, Jurkevitch E, Schwartsburd B, Hampel M and Okon Y. 1998. Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Microbiology 144:1989-1999.
 
Burdman S, Kigel J and Okon Y. 1997. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biology and Biochemistry 29:923-929.
 
Burdman S, Sarig S, Kigel J and Okon Y. 1996. Field inoculation of common bean (Phaseolus vulgaris L.) and chick pea (Cicer arietinum L.) with Azospirillum brasilense strain Cd. Symbiosis 21:41-48.
 
Burdman S, Volpin H, Kigel J, Kapulnik Y and Okon Y. 1996. Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Applied and Environmental Microbiology 62:3030-3033.
 
Volpin H, Burdman S, Castro-Sowinski S, Kapulnik Y and Okon Y. 1996. Inoculation with Azospirillum increased exudation of rhizobial nod gene inducers by alfalfa roots. Molecular Plant-Microbe Interactions 9:388-394.
 
 

Chapters in Books and in Selected Conference Proceedings


 
Pérez-Montaño F, Jiménez-Guerrero I, Tamir-Ariel D and Burdman S. 2024. Virulence-related assays for investigation of the Acidovorax citrulli-Cucurbitaceae pathosystem. In Medina C and López-Baena FJ (eds.), Host-Pathogen Interactions: Methods and Protocols (Part of the book series Methods in Molecular Biology, vol. 2751), Springer, Berling/Heidelberg, Germany, pp. 81-94.

Burdman S and Walcott R. 2018. Introduction to the Acidovorax Genus and Plant-Pathogenic Acidovorax Species. In Burdman S and Walcott R (eds.), Plant-Pathogenic Acidovorax Species. American Phytopathological Society (APS) Press, St. Paul, MN, pp. 1-4.

Burdman S, Tamir-Ariel D and Santos-Garcia D. 2018. Acidovorax citrulli: Basic Aspects of Pathogen-Host Interaction of Bacterial Fruit Blotch Disease. In Burdman S and Walcott R (eds.), Plant-Pathogenic Acidovorax Species. American Phytopathological Society (APS) Press, St. Paul, MN, pp. 59-74.

Zaini PA, Burdman S, Igo MM, Parker JK and De La Fuente L. 2015. Fimbrial and afimbrial adhesins involved in bacterial attachment to surfaces. In Wang N, Jones J, Sundin G, White F, Hogenhout S, Roper C, De La Fuente L and Ham JH (eds.), Virulence Mechanisms of Plant-Pathogenic Bacteria. American Phytopathological Society (APS) Press, St. Paul, MN, pp. 73-106.

Wisniewski-Dye F, Vial L, Burdman S, Okon Y and Hartmann A. 2015. Phenotypic variation in Azospirillum spp. and other root-associated bacteria. In de Bruijn F (ed.), Biological Nitrogen Fixation, Vol. 2. John Willey and Sons, Hoboken, NJ, pp. 1047-1054.
 
Rosenberg T, Eckshtain-Levi N and Burdman S. 2015. Plant pathogenic Acidovorax species. In Murillo J, Jackson RW, Vinatzer BA and Arnold DL (eds.), Bacterial-Plant Interactions: Advanced Research and Future Trends. Caister Academic Press, Poole, UK, pp. 83-99.
 
Reem G, Burdman S and Okon Y. 2015. Methods for studying phenotypic variation in Azospirillum. In Cassan F, Okon Y and Creus C (eds.), Handbook for Azospirillum: Technical Issues and Protocols. Springer, Cham, Switzerland, pp. 231-239.
 
De La Fuente L and Burdman S. 2011. Pathogenic and beneficial plant-associated bacteria. In Lal R (ed.), Encyclopedia of Life Support Systems (EOLSS), Agricultural Sciences. Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford, UK (http://www.eolss.net).
 
Helman Y, Burdman S and Okon Y. 2011. Plant growth promotion by rhizosphere bacteria through direct effects. In Rosenberg E and Gophna U (eds.), Beneficial Microorganisms in Multicellular Life Forms. Springer-Verlag, Berlin, Germany, pp. 89-103.

Yedidia I, Ophir R, Yishay M, Ion A, Luzzatto T, Golan A and Burdman S. 2011. A story of an old battle: Pectobacterium carotovorum and ornamental monocots. In van den Ende JR, Krikke AT and den Nijs APM (eds.), X International Symposium on Flower Bulbs and Herbaceous Perennials. International Society for Horticultural Science, Leuven, Belgium, pp. 417-426.

 
Castro-Sowinski S, Burdman S, Matan O and Okon Y. 2009. Natural functions of bacterial polyhydroxyalkanoates. In Chen GQ (ed.), Plastics from Bacteria: Natural Functions and Applications, Microbiology Monographs, Vol. 14. Springer-Verlag, Berlin, Germany, pp. 39-61.
 
Valverde A, Castro-Sowinski S, Lerner A, Fibach S, Matan O, Burdman S and Okon Y. 2008. Exopolysaccharide production and cell aggregation in Azospirillum brasilense. In Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C and Newton WE (eds.), Biological Nitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture. Springer, New York, NY, pp. 319-320. 
 
Burdman S, Lee SW, Stolov A, Han SW, Jeong KS, Valverde A and Ronald P. 2006. Xanthomonas oryzae pv. oryzae genes required for elicitation of disease resistance in Xa21-rice. In Sánchez F, Quinto C, López-Lara IM and Geiger O (eds.), Biology of Plant-Microbe Interactions, Vol. 5. IS-MPMI, St. Paul, MI, pp. 287-291.
 
Burdman S, Kadouri D, Jurkevitch E and Okon Y. 2002. Bacterial phytostimulators in the rhizosphere: from research to application. In Bitton G (ed.), Encyclopedia of Environmental Microbiology, Vol. Soil Microbiology. John Wiley & Sons, NY, pp. 343-354.
 
Burdman S, Jurkevitch E and Okon Y. 2000. Involvement of extracellular components in the aggregation of Azospirillum brasilense. In Pedrosa FO, Hungria M, Yates G and Newton WE (eds.), Nitrogen Fixation: From Molecules to Crop Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 415-416.
 
Burdman S, Jurkevitch E and Okon Y. 2000. Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In Subba Rao NS and Dommergues YR (eds.), Microbial Interactions in Agriculture and Forestry, Vol. 2. Science Publishers, Enfield, NH, pp. 227-248.
 
Burdman S, Vedder D, German M, Itzigsohn R, Kigel J, Jurkevitch E and Okon Y. 1998. Legume crop yield promotion by inoculation with Azospirillum. In Elmerich C, Kondorosi A and Newton WE (eds.), Biological Nitrogen Fixation for the 21st Century. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 609-612.
 
Okon Y, Itzigsohn R, Burdman S and Hampel M. 1995. Advances in agronomy and ecology of the Azospirillum/plant association. In Tikhonovich IA, Provorov NA, Romanov VI and Newton WE (eds.), Nitrogen Fixation: Fundamentals and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 635-640. 
mpp.v21.1.cover.gif
Burdman et al_2005_Plant disease_cover p
bottom of page